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ABSTRACT

The motion of a perfectly conducting fluid past a fixed body in

the presence of an aligned magnetic field can be regarded as the limit

of a number of problems viz: (i) when the fluid is a finite conductor,

(ii) an unsteady problem, (iii) the magnetic and velocity fields are

not parallel at infinity. The limits of these more general problems agree

in predicting a force on the body and on the existence of upstream and

downstream wakes. However, if the magnetic field is fairly strong

(i) does not predict a downstream wake while (ii) and (iii) do.

An attempt to reconcile these limit results is made here. In the

first part we show that the unsteady problem associated with a finitely

conducting fluid and an aligned field is non-unique but that by making

an appeal to the theory of real fluids the conclusion of (i) and (ii)

can be obtained as special cases of the general solution. In the second

part the steady problem, assuming that the conductivity is finite and the

magnetic field is nearly aligned, is considered and it is shown that the

flow fields predicted in (i) and (iii) are limiting cases of this more

general problem. The manner of the changeover from the solution for

(i) to that for (iii) is elucidated.



MAGNETO-FLUID DYNAMICS OF BODIES IN ALIGNED FIELDS

K. Stewartson

1. Introduction

The properties of the two-dimensional motion of an incompressible

inviscid fluid, of electrical conductivity o, past a fixed non-conducting

body end in the presence of an imposed magnetic field have attracted much

interest in recent years. In particular, the properties of the motion when

the magnetic and velocity fields are aligned, i. e. parallel, at large distances

from the body and o is infinite have been the subject of some controversy.

Sears and Resler (1) pointed out that in these circumstances there is a

simple solution of the equations of motion in which the magnetic field

outside the body is everywhere parallel to the velocity field which in turn

is identical with that when r = 0. Inside the body the magnetic field

vanishes. One important deduction from this solution is that the drag on

the body is zero. They also briefly discussed the solution when a is

large but not finite and concluded that if the body is thin, their solution

is consistent with it in a limited sense. Subsequently, Ring (2) extended

their solution to include the effects of oscillating a thin body about an axis.
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Some doubts about the relevance of these solutions to physically

realisable situations were cast by Stewartson (3), who meant that it was

doubtful whether the solution obtained by Sears and Resler (1) was the

limit of a general fluid dynamic problem in which the motion was started

started from rest, at which time the magnetic field was everywhere uniform

and at an inclination a to the mean direction of flow, and the fluid was of

finite conductivity, as t -. 0o, a -. 0, o* -. 0, either jointly or separately.

In support of these doubts he considered the unsteady motion of a thin body

with Go = ao, a = 0, showing that the disturbance produced manifested itself

partly as a potential flow and partly in the form of wakes travelling from the

body along the lines of magnetic force without being either dispersed or

diffused. Let H 2 /47 PVVoo, where H0, V0o are the magnitudes of the

undisturbed magnetic and velocity fields and p is the fluid density: then

if P > 1 these wakes travel upstream and downstream of the body while if

S< 1 both travel downstream • For the simple solution to be correct these

wakes must be absent but all that could be deduced with certainty from the

temporal solution is that the assumption of small disturbances breaks down

at infinite times. It is noted however that the argument in the paper is not

entirely satisfactory. At any finite value of t it may be shown that the

magnetic field is continuous at the body (taking the permeability of both fluid

and body to be unity) because the normal component of the magnetic field

is non-zero. In the paper it was tacitly assumed that the same condition
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must hold at an infinite time but as M. B. Glauert kindly pointed out to

the author the properties of the steady state solution imply that the normal

component of the magnetic field must be zero if the disturbances are small

so that a discontinuity in the tangential component of the magnetic field is

permissive. If the discontinuity is allowed and the disturbances in the fluid

are kept small the solution obtained by Sears and Resler (1) is recovered,

but of course the disturbance to the magnetic field in the body is not small

since it is actually zero. Consequently, as stated above, the only legitimate

conclusion from a study of the general temporal problem is that the ultimate

steady solution, if it exists, is not uniformly a small perturbation from the

undisturbed state.

There is however a limiting temporal solution which can be carried

out without any such difficulty, namely if P >> 1 and here Stewartson (3)

showed that the ultimate solution is quite different from the prediction in

(1) and contains two wakes extending upstream and downstream to infinity.

Thus at least one of these two solutions must be a singular limit. If infinite

wakes are permitted it follows that arbitrary conditions at infinity cannot be

imposed on the flow when P > I without losing physical reality and the

question of determining physically realistic solutions becomes an order of

magnitude harder to answer. We note that the solution with I >> I is

obtained by neglecting the convection terms in the equations, L e. by

assuming that the fluid has velocity but does not moves
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The second limit problem a - 0 was investigated by Stewartson

(4) assuming a prefectly conducting iluici, and steauy conaitions. In

fact the general problem when the magnetic field is at an arbitrary angle of

incidence a to the velocity field was solved and on taking the limit a -. 0

it was found that the flow properties are in accord with those suggested by

the temporal solution and not with the hypothesis that wakes are absent.

In particular the drag on a symmetric and symmetrically disposed body

takes the form
2

4pV {f(x) ) dx (1. 1)

where ft(x) is the slope of one side of the body; if the flow properties

were independent of the magnetic field the drag would be zero. However,
I this argument is not conclusive since the theory breaks down in the limit

a - 0 because the disturbances are no longer small and because when

a << E, where a is a measure of the slope of the body, the wakes

intersect the body.

The third limit problem is to study the steady flow properties

when a = 0 but a is finite with particular reference to the solution

when gr is large. This has been carried out by Lary (5) for a thin
I

body who found that the drag is proportional to o - when a is large.

Further if P < 1 a strong wake develops downstream of the body only,

as a is increased, while if P > 1 the strong wake develops upstream only.

Since the disturbances produced by the body increases with 4r the solution
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obtained by Lary (5) is of limited validity, the precise condition being that

2
SeE << 1, and so cannot be applied immediately to the case o- = o.

However it does present further evidence in support of the view tk. St the

flow of a fluid of infinite conductivity is grossly different from that of a

fluid of zero conductivity, that it contains either downstream or upstream

wakes and that the force on the body is non-zero. Nevertheless the

solutions obtained by the three limiting procedures t - wo, a -. 0, a- - go

do differ in certain details of which the most important is that in Lary's

solution there is no downstream wake when P > 1 while in the other

limiting procedures (t -- ao and a - 0) such a wake is present. In this

paper we shall attempt to reconcile the limiting procedure a - oo with the

other two. First we shall discuss the properties of the unsteady linearized

equations in the presence of an aligned magnetic field and show that the

equations do not have a unique solution unless appeal is made to the theory

of real fluids in order to determine the vorticity at the rear of the body. It

is argued that if the flow remains almost uniform and the body is appropriately

streamlined the non-uniqueness may be removed and Lary's solution is then

recovered. In the temporal problem with a- >> I for which a solution could

be found P >> 1 the streamlines are greatly disturbed and there are some

theoretical grounds for accepting the solution in (3) if co = C and in (4)

if a- < 00.
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In the second problem the steady flow properties when o >> 1,

u2
a << 1 but a- is finite are studied and the manner of the transformation

2
of the solution from (5) to (6) as a2 varies from o0 to 0 is

demonstrated. In particular the disappearance of the strong wake down-
2

stream of the body as a- -• 0 for P > I is elucidated.

Although it seems clear that the simple solution obtained by Sears

and Resler (1) is not the limit of any of the more general problems considered

here, we are not yet justified in concluding that it is essentially isolated. For

there is another limit which has not yet been considered, namely Y -. 0 , where

v is the kinematic viscosity of the fluid. In the discussion it has been tacitly

assumed that v = 0 from the outset and it may be that if the order of taking

limits is reversed the flows obtained may be quite different. In this connection

it is noted that Hasimoto (6) has shown that if o = o, v * 0, P < 1, there

is a solution of the governing equations which is identical with that for a non-

conducting fluid of different viscosity: if P > I the two flows are closely

related. Whether Hasimoto's solution is the limit of solutions with finite Cr

as o-' o0, is an unresolved question at present but certainly its limit as

S- 0 is identical with (1)

I
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PART I

UNSTEADY THEORY

2. The Basic Equations

Consider a cylinder body of characteristic length a fixed in

an incompressible fluid of electrical conductivity r and permeability

S= 1. The fluid is initially at rest and at time t' = 0 is set in motion

such that the velocity at an infinite distance upstream of the body changes

abruptly to a magnitude V., in a direction perpendicular to the generators

of the body (i. e. to the z direction) and subsequently is kept constant.

In addition a magnetic field is imposed which at all finite times is uniform,

of magnitude H., and parallel to the velocity field at infinite distances

upstream of the body. Dsnoting the velocity and magnetic vectors by

19 it the fluid pressure by p and the density by p the governing

equations are

-- curl (%X•,) + - curl curl H 0 , div H = 0 (2.1)

+ (Qgrad),=% -- grad p + -(curlHxH dive,=0 . 2)

Let ax, a measure distance along and perpendicular to the direction of the

undisturbed stream and in the plane of motion: let at /V~on t. Further suppose
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that the disturbances caused by the body are small so that squares and

products of the perturbations in q, H may be neglected. Write

q = V~oi + VWX, X = Ho.L + Hw (2.3)

where i, is a unit vector in the x direction and on substituting into (2. 1),

(2.2) we get

2a_ 2z _1. v 8v av V,,
V - R + R-- =0, - +Y-x =gradP+P-'- (2.4)

where

R = 4-farVwo, P =H 24pVoo , (2.5)

2
p = -pVý(P + Phx) + Poo (2.6)

and p., is the fluid pressure at infinity. The velocity and magnetic fields

may be expressed in terms of two scalar functions , 4 as follows:

vx + !!, vy +P (2.7)ex a 2  xat 8xay y axay eyet ax

x 2 8a8x ayat ' 2 xx- t
ax e
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8 822 2

where

82- 2 0 (2.10)
ax 2 y

and

a + )v2÷" R L+_- + R( 0 (2.11)
8x2

Equation (2. 10) is standard but (2. 11) is unusual and has some interesting

features. If 4s is independent of t it reduces to

I--P [ v1)- R(p - )1 ] =0 (2.12)

of which one solution is independent of x and the others satisfy an equation

reminiscent of the vorticity equation in Ose~n's approximation to the Navier

Stokes equations of classical hydrodynamics. The existence of a solution

independent of x means that there is a possibility that a wake may develop

ultimately extending to infinity, which in turn may mean that it is not uniformly

valid to impose uniform conditions at infinity. Let us examine how this solution

arises by looking at the variation of 4 with t. It is convenient to take the

Laplace transform of (2.11) with respect to t, using s as new parameter

and denoting the transformed function by T. The equation satisfied by T is
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O + e -(2. 13)

of which solutions can be found by writing

oo~ e (sin ky } dk (Z 4

B- fSk, sle• cos ky (.4
0

where k is real and 0 such that the real part of Ox is negative. From

(2.13) 0 satisfies

(e+s)(02 -k_) -R(e+s) + Re =0 (2.15)

and we take s to be real and positive. When 0 = .oo the left hand side of

(2. 15) is negative, when 0 = -s it is positive and equal to Rps , when

O = 0 it is negative and equal to -(sk2 + Rs 2) and finally when 0 = +ao it

is positive. Thus there are three real roots 01, 02, 03 of (2. 15) which

satisfy

e <_-- 3 (2.16)

the equality signs being possible only if sa= 0, P z co, or R = cc, or if

i
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S= 0 and s = k. Otherwise the roots are distinct. Further of the roots

only 03 is relevant to large positive values of x and 01, 02 to large

negative values of x, since tP cannot be exponentially large at infinity.

When s is large (2.16) reduces to

(0+ s)(0e2 Rs) = 0 (2.17)

so that 0 - 2-s, = -- s , 0 3 + 4 as s - . These roots

may be interpreted In terms of solutions of the equation for 4'. If 0 = -s

when s is large it follows from (2.14) that

4'=F(x-t, y) (2.18)

when x - t is small, where F is some function at present arbitrary, and

corresponds to a disturbance travelling downstream with the main stream

velocity. Such a solution might have been anticipated since the linearization

of the equation is partly equivalent to assuming that convection is taking

place with the main stream velocity rather than with the local stream velocity.

If 0 I-J' t follows from (2.14) that

2
9 g(x, y, t) e-x/t(2.19)
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when t is small, where g is also arbitrary. This solution corresponds to

a diffusion and arises if on setting the fluid into motion the change in the

magnetic field due to the currents engendered leads to an initial discontinuity

in either of its components at the surface of the body. The discontinuity begins

to diffuse in a manner characterized by (2. 19).

We now enquire what happens to these solutions as t -. 0 assuming

that the ultimate motion is steady. The assumption is equivalent to assuming

that 0, B are regular functions of s in the half plane re s > 0 and that on

the imaginary axis of s the singularities,if any,are sufficiently weak, except

at s = 0, for their contribution to 4j to die out algebraically as t -. 0o. It

is then sufficient to consider the behaviour of 0 near s = 0. When s = 0

(2. 1 ) reduces to

0(02 - k )+ R(P- 1)e =0 ; (2.20)

from the definition of 61, 02, 03 in (2. 16) it follows that

e0-. R(-) - %/R 2(P-l) 2 +4k 2

02 -00 (2.21)

1 1 2 2 203 --- R(P -l) +4. R(-l) + 4k
3
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as s- 0. More precisely as s-.0

02/s -l -1 (2.22)

One may reasonably suppose that the correct form for , in a particular

problem is compounded of multiples of the three solutions defined by

( 2. 14) (2.15) and further that that part of the disturbance characterized

by * is centred at the body at t = 0, moving away from it as t increases.

It then follows that only the solution 1,3 given by (2. 13) with 0 = 03 affects

the region upstream of the body (where x is negative), that when t is small

+3 is diffusive and that when t is large i3 decays exponentially with x for

finite R and P 0 1. Hence at large distances upstream the perturbation in

the state of the fluid is dominated by the harmonic term +. Downstream of

the body the solutions +l' 14 with ) = 0l, e2 are relevant and a comparison

between (2. 17) (2. 21) (2. 22) shows their r6les interchange as t increases

from 0 to 00. When t is small +1 is wave-like while ip 2s diffusive.

On the other hand when t is large q'1 decays exponentially with x whileS2 is a function of x - t and y. In fact since we are assuming steady

motion we have from ( 2. 4), ( 2. 8) that 8a 2 /ax is independent of x

and IJ has the form

(x-t)F(y).

Of the solutions derived +1 '3 also satisfy
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V2x+R(P -1)ex =0 (2.23)8x

and for convenience we shall denote the x-derivative of that part of j which

satisfies (2. 23) by W . The other solution "'2 is, from continuity, only

zero inside a region C bounded by straight lines parallel to the x axis

and by infinity on the downstream side. The fourth part of the boundary can

be defined when the body is thin: it consistý. of the rear portion of the body

and the straight lines mentioned above touch the body.

If the body is not thin the linearized equations are in general not valid

in the neighborhood of tha body, so that C cannot be fully defined. However

the description of tp as t - o0 given above can be used to discuss the ultimate

flow pattern at large distances from the body. It will consist of a harmonic

term and a downstream wake for all values of R, P . In addition if R is

large there is a wake-like contribution from T extending downstream in a

region somewhat like C if P ( 1 and extending upstream in an otherwise

similar region if P >I. In fact if R=o, P (1, W is of the same form as

8 /O2 8x when x is large and positive and if P > 1, T is independent of x

when x is large and negative. It is noted that + 2 makes no contribution

to A in virtue of (2. 8) so that at finite R, P only the velocity distribution

can be non-uniform in C. On the other hand 4 can be non-zero in the wakes

produced by * when R = ao.

Let us now examine the properties of ' in the two limiting cases

R- 0 and R- o0. First if R = 0 (2.15) reduces to
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(0+ s)(0e2-k) = 0 (2. 24)

with roots t = -s and 0 = i k and here the root which behaves like 01

when s is large behaves like 02 when s is small and vice-versa. There

is no interchange of roots at s = k when (2. 24) has a double root as may

be seen by tracing the roots when arg s is small and positive. Thus the

solution in the limit R - 0 + is not the same as the solution when R = 0

and so care must be exercised in inferring flow properties when R is small

from those when R = 0. Sketches of the behaviour of 01, 02 regarded as

functions of s when R =0 and when 0 < R << 1 are given in Figure 1

i's

-k - 2 R =0

01, R#OO "••"

0

FIGURE 1
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Second if R= 0 (2. 15) reduces to

(9+s) 2 = p02

i.e. (2. 25)

0 = s(*1- p½ -l)" .

These two solutions correspond to 01, 02 if p 1 and to 02, 03 if

P3)1. Thethirdrootof (2.15) becomes +ao if P<l and -co if P> I1.

On the other hand if R is large but finite 0 2Is - -1 as s - 0 which is

different from ( 2. 25). A more careful scrutiny of ( Z. 15) shows that when

R is large and s is small the form taken by the roots depends crucially on

Rs. Take P < 1 and then 03 = R( I - p) which is effectively infinite. The

other two roots satisfy

-k2(0 + s) = R(6 + s) _ - R02 (2. 26)

with solution

e - k 2+ Zs * 4k 4 + 4Pk2 Rs + 40(Rs) (22?

s 2(l- p) Rs(

Using the inversion formula for Laplace transforms we can now

describe the behaviour of ý when t is large. If P < 1, 1 <<t << R,

the solutions of (2. 13) corresponding to 01, 02 are two Alfv6n waves
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travelling downstream from the body without dispersion and with velocities

given by I* NrP . Ae t increases through R dispersion and change of

speed of propagation occur until when t >>R the flow pattern described

in the general case is recovered. Again therefore caution must be exercised

in inferring steady flow properties when R is large from those when R is

infinite. This point has already been discussed by the author in a paticular

case (7) to which the reader is referred for further details.



-18- #360

3. Application To Flow Past Thin Bodies

The linearized theory of magneto-fluid dynamics may be used to study

the complete flow field in two circumstances: when the body is thin and

orientated so that the streamlines are almost straight and when the magnetic

field is strong (A >> 1) so that the inertia terms are negligible. In this

section we consider the first of these deferring the second to §4. Suppose

the body occupies the neighborhood of that part of the x axis for which

IxI < 1. From the theory of §2 it follows, on assuming that the ultimate

flow field is steady and almost uniform, that in the fluid

80 8* F18 8*k

v =-+ +- + Vy ovt
"x Wx By y y ex

(31)

h =Le+. a a8 8*
"h x - y hy ZW-aX

where we have written 0 for 8+/8x, T satisfies (2. 23) and both

grad 0, grad V vanish at infinity: the box surrounding F(y) in the

equation for v means that there is an additional contribution to vx

independent of x, inside C+ , a region bounded by the rear part of

the body and two lines parallel to the x axis which touch the body and
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extend to infinity downstream of it (See Figure 2).

A )D-

Direction of Flow

FIGURE 2

Inside the body the velocity field is zero and the velocity field is

harmonic. As a consequence the variation in the magnetic field across the

body is small and since the tangential component of the magnetic field and

the normal component of the induction are continuous at the surface of the

body, it follows that for fixed x the values of hx , hy on the top and

bottom surfaces of the body are equal. A further condition to be satisfied

on the body is that the velocity be tangential to the surface: if the surfaces

of the body are given by y = f *(x) , the * signs denoting the top and bottom,

this condition reduces to

vy = fI(x) ( 3.2z)

on the body, effectively y = 0*, I x I < 1 . There is now sufficient

information formally to complete the determination of 0, * and this
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has been done by Law (5) in a sufficiently representative number of cases.

Lary tacitly assumed that F(y) E 0 but so long as it Is small it can be

regarded as a quantity to be found after 0, ' are known and in particular

makes no contribution to the forces on the body. Hence his description of

these forces is essentially complete. For full details of his solution the

reader is referred to his paper but it is noted that for large R a strong

wake develops upstream or downstream according as P > I or p C I and

that the drag c R3 . This means that the theory becomes invalid for

sufficiently large R and he showed that the condition for validity is that
-2

R << a where 4 is a representative thickness of the body. There remains

the determination of F(y) which since it leads to a downstream wake for all

p is the essential link between the solutions with e << 1 and those with

>> 1.

As we have seenthe presence of F(y) is bound up with the root

0 = 02 of the cubic equation (Z. 14) and corresponds to magnetic diffusion

from the surface of the body at t = 0. Thus the solution corresponding to

0 = 02 is non-zero at any finite time and a further argument is necessary

at t = o before it can be included. Basing the argument on uniform

conditions at infinity is unsatisfactory since the effect upstream of

improving such a condition at large positive values of x dies out

algebraically in + and exponentially in * so that it cannot affect the

flow near the body.
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The further condition by which F(y) is determined must be sought

in the flow properties near the body and we suggest that the clue to the

condition lies in the vorticity. The necessity for a condition on the vorticity

in a linearized theory is most easily seen from a study of the flow when the

conductivity of the fluid is zero. The governing equations are then

8', 8'X
+ ÷ = grad P, div y.=O (4.3)

from (2. 5), ( 2. 6). In two-dimensional motion (4. 3) implies that

a + PS = 0 (4.4)
8t ax

where I is the vorticity. This equation simply means that vorticity is

convected along lines parallel to the x-axis. On assuming that all vorticity

originates at the body it follows from (4. 4) that ý is zero except irside

C+, which extends downstream from the body. Inside C+ the behaviour

of T cannot be found without making some assumption about , on that

part of the body bounding C+ {ABC in Figure 2 } . Thus if , = g(y, t)there,

=g(y, t - x + X(y))

in C where x =X(y) on ABC: as t-. o

+
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for all x. When the conductivity of the fluid is zero the additional assumption,

by which g may be found, emerges from a study of the flow properties of a

fluid with small viscosity as follows. It is supposed that the shape of the

body is such that the boundary layer rei.,ains attached to it over almost all

of its length. Then over almost the whole width of C+ the fluid particles

have zero vorticity by Kelvin's circulation theorem since they had none

upstream. Hence g = 0 except possibly when y/Ac << I.

If the fluid is conducting (4. 4) becomes

8h 8h
2t + = P 1h { - Oh (4.6)at ax 8x ax 8y

and again 4 can be given an arbitrary value on ABC. In order to fix 4 and

obtain a well-posed problem we adopt a similar argument to that for or = 0.

First we suppose that the body is streamlined so that an insignificant amount

of vorticity is shed from the boundary layer. Second we make use of the

magneto-fluid dynamic extension of Kelvin's theorem in a linearized form.

This implies that the vorticity at DZ may be calculated from the vorticity

at D1 whose y-coordinate is the same as that of D2 (see Figure 2) by

1 2 x yintegrating (4. 6) from D1 to D2 using the values of hx, hy on the

boundary of the body, i.e. by the values of hx, h as the line y = 0.xy

Here the motion is steady and so the difference in the values of the

vorticity at DI and D. is equal to
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D

Hence on comparing the values of the vorticity at D1 , D32 it follows that

F(y) * 0

and Lary's solution is completely valid if R << " It is worth noting in

passing that if the vorticity condition had led to a non-zero value of F(y)

it would have been O(e 2) since F'(y) = O(E)
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4. Discussion

It was pointed out in § 1 that the main differeice between the unsteady

and the finite conductivity approaches to the flow of a perfectly conducting

fluid past a body in the presence of an aligned field occurs if P > 1 and

concerns the existence of a velocity wake on the downstream side of the

body. It has been shown in §3 that the steady state solution of the problem

when o < co contains an arbitrary function which gives rise to this wake and

is associated with the vorticity shed fran the body. Provided the flow remains

almost uniform and the body is streamlined to delay boundary layer separation

the vorticity shed may be neglected and this function vanishes. The flow

pattern is then as predicted by Lary. Thus the uncertainty in the solution

is resolvediby an appeal to the realism of the flow predicted.

Unfortunately the flow diverges strongly from its uniform state either

as R- o or P - ao. If R = and P finite there is a controversy about

the character of the flow but for P = o0, R = wc there exist strong magnetic

and velocity wakes upstream and downstream of the body (3). Although the

solution with R finiti and P = co (7) differs from that one because the

magnetic wake is absent the two can be reconciled. Consequently we need

only consider the discrepancy between the solutions with >> 1 and finite

P, R being finite in each case.

Let us now examine the form taken by (3. 1) when P is large and R

finite. The equation satisfied by * reduces to
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r = 0 (4.1)

except near the part ABC of the body where a boundary layer type of

phenomenon can develop in S. Assuming that the velocity is of order

one at most, hx, hy, vx, 0 are negligible In (4.1) and

F1 (y) in C+

v X F2 (y) in C (4.2)

0 elsewhere

where F1 , F2 are functions of y to be found. The solution for P >> 1

(7) is obtained by setting F1 = F2 = -1 so that the velocity is zero in Ck

and undisturbed everywhere else. This form is consistent with the

approximations made and appears to be more realistic than the form

obtained by extending Lary's condition on F(y) for then, F = 0 and

F2 = -1 : the boundary condition on the velocity over ABC being satisfied

by means of the boundary layer in * mentioned earlier. The alternative

requires motion of the fluid in ABC which a real fluid would be unlikely

to sustain.

There is however some experimental evidence which should be

borne in mind In connection with these problems. The theoretical flow

properties when P >> I are very similar to those when a body moves

slowly along the axis of a rotating fluid namely that upstream and down-

stream wakes are predicted. Experiments to test this theory have been
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carried out by Taylor (8) who examined the flow in the upstream wake and

by Long (9) who examined the flow ahead and behind the body. Both

experiments confirmed the existence of the upstream wake but Long found

that the fluid streamlines closed up behind the body contrary to the theoretical

prediction. No firm explanation of the discrepancy has been offered but a

tentative explanation is as follows: in Long's experiments the body was

moved under gravity in a finite cylinder of fluid and it is possible that the

incipient motion of the fluid in C+, in line with the theory, caused a

cavity at a external boundary of the fluid, the filling up of which greatly

disturbed the fluid properties in C+ . It would be of interest to examine

the flow if the body is fixed and a rotating fluid forced past it to see whether

the fluid still closes up in C+ . From the point of view of the present paper

Long's experime it, while making us optimistic that the wake in C would

be obtained experimentally, must make us cautious about accepting the

solution with F1 = -1. It seems in fact that further theoretical progress

depends on obtaining experimental evidence of the flow properties at large

values of R.



0360 -27-

PART II

APPROXIMATELY ALIGNED MAGNETIC FIELD

5. Formulation

Here we suppose that the motion is steady but that the imposed

magnetic field is inclined at a small angle a to the x-axis. Further

the body is thin, symae tric and symmetrically disposed to the main

stream so that in (3. 2)

f + (x) =-f (x)

We assume that the perturbations in the velocity and magnetic fields

are small and write for their components relative to the x, y, z axes

I

,g =V ,(l+vx, vy, 0), J.=Hi,(cos a+ h, sina+hy, 0) (5.1)

and on substituting into (2. 1) (2. 2) a set of linear equations is obtained

after neglecting squares and products of small quantities. It may then be

shown that X, A can be expressed in terms of two functions *, i viz:

2 2 82.)
v=- + P[cosa a--- + sin-a

8x2 8xSy 8y

(5. 2)

v= Px[Cosa 8x +sina yy xey ex 2 exey
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2 x~ y 8xy 2

(5.3)

h = cosaa 2 -sin a L2-+_ -
y exey ex 2  ax28x 8x

where * is harmonic and

-8 (!. * = R8 - PR cos 2 a a2% + 2Zcos a sina 2 40 +sin?'a!!, (5.4)
8x ex 2  By2  ex 2  C x 2  8Xy /y

It follows that

- -P Z+ (l-cos +sin a 15.5)
pV2x 8xexey dx

The equation (5. 4) satisfied by 4' is superficially somewhat different

from ( 2. 11) but they are reconcilable if regarded as particular cases of a more

general equation in which a 0 0 and * depends on t. We shall see however

that the non-uniqueness obtained in Part I is absent in the present investigation.

The reason for this difference is not entirely clear and further work on this aspect

of the problem would seem desirable.

As In earlier work (10) we make use of Fourier transforms to get a

general solution of 4s in a form convenient to our purposes. Write
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fi0+aWe'x-4yd (5.6)¢(xy) = f . (5.f)

-00

in the half plane y > 0 where *+, *+ are arbitrary functions. From the

differential equations satisfied by +, I

2 2 2
=w +0 (5.8)

2 2 2 2 2 3
[iW+PRsin a]x _2ip~lcosasinax++ w2R-w PRcos a - lW = 0 (5.9)

and to ensure convergence of the integrals g, X + must have positive real

parts on the real axis of w . So far as g is concerned this means that the

upper half plane re w > 0 must be cut along the positive imaginary axis,

the lower half plane re w < 0 must be cut along the negative imaginary

axis and 4 chosen to be real and positive on the real axis of . The

specification of x+ requires a little more care. From (5. 9)

SIwRcos a sin a*: 1w [ -W iwR(P - 1) + PR2 sin 2 a (5.10)
+w + PR sin a

I
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when w is large = X - and it follows that w must be wIwI

being positive and negative with w. Hence the w plane must be cut at

infinity both above and below the real axis and the positive sign chosen

in (5.10). For convenience the cuts may be made along the imaginary

axis and therefore they extend inwards towards the origin as far as the

first zeroes met of the expression under the square root sign in (5.10)

i.e. asfaras is,, -is, where s1, -s2 are the positive and

negative roots of

s -lR( -l)s-PR sin2a =O0

From these points inwards to the origin the cuts are absent until the next

zeroes are reached and since these both occur at the origin the factor

02w may be replaced by w. Thus

iW(PRcosa sin + Jw, -WR(P-l) +PR 2 sin2- ) (5.11)
X+ 2

iw + PR sin a

If R--0

iW
x+ =si-na(cosa + P-2) =iWc+ (5.12)

which meai.s that the corresponding form for 4 is
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F+(x -. c +y) y > 0  (5.13)

where F+ is an arbitrary function, in agreement with earlier work (5).

This solution represents an Alfv6n wave extending to infinity in a direction

between the magnetic field and the downstream directions. If a = 0, 1. e.

the magnetic field is aligned

2 .
x+ = (W iuR(p- ))a (5.14)

the cut extending over the whole imaginary axis except for the strip

0 < iIwI < iRIP-li . Comparison of (5.13) with (5.15) indicates that

the case a = 0 is not a straight forward limit of the solution when a # 0 .

The singular nature of the limit is also brought out by studyirg the double

limit procedure a -. 0, R 00 holding Ra2 = e8 fixed. The expression

for x+ is then

S=P+ e - Iw(o - l)} (5.15)
Ra icW + 0

showing how sensitive the form for x+ is to the value of 0.

Parallel arguments to the above may be used to show that when

y <O
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+(x, y) 2w~ f 0( W). g dw

o0 iWX+XY
4iX, y) 2W f dw

-00

where 0, P are arbitrary functions and

X 2 -PR cos a sin a + 4 w2 iwR(P - 1) +PR 2sin a . (5.17)" lw +PR sin a

If R-=

x =- =ic (5.18)sina

leading to a corresponding form for q,

F (x + c-y) (5.19)

which is different from (5. 13). If a = 0 however

21
X =[W .iwR(p-)] (5. 20)

which is identical with (5. 14) . Thus if P > 1, a0, R= 00 the solutions

for t' is y > 0, y < 0 correspond to wakes roughly pointing downstream

and upstream. But if P > 1, a = 0, R < oo the two solutions are of similar
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2
type. Finally if a- 0, R•- 00, Ra =e

x-(-pe+'-iw( -1) ) (5.21)R- iwo + POe

which is different from (5.15) for all 0> 0, but not if 0 =0.

In consequence we can expect the wake structure of the flow when

a 0 to be of a different kind from the wake structure when a 0 0, even

if a R-1 so that in some sense the limit a - 0 is singular. In the next

I2section the properties of the solution when a << 1, R >> 1 but aR , 1

will be explored; it will be found that the singular nature of the limit is

I confined to the wake structure, the form on the body when a = 0 being

deducible from the form when a # 0.

I
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6. Approximately Aligned Field: Symmetric Body

In view of the difference between the wakes for P > I predicted

in [ 4] when the magnetic field is oblique and r = co, and LaryIs theory,

it Is of interest to examine the properties of the solution when R is large

and a, the angle between the undisturbed velocity and magnetic fields, is

small. It will be supposed, following the discussion in §5 that the orders

2 2
of magnitude are such that Ra = 0 is of order unity. Let

PA 1 -Plx) [a] --Qlx) [ 1 -i]=six) , (-- ] -Tlx) (6.1)
8x 8v ax 8y

where the symbol [ ] denotes the leap in the function as y increases

from 0- to 0+. If we denote the transforms of P, Q, S, T by bars,

+ W'21w 2= (6.2)

. P W = - (6.3)

= iW(X+ + - X+ + X - iw(X + X+) x + + (.

these formulae holding for general values of a, R. We now specialize to

small values of a and then, from (5. 3), since hx, hy are continuous

at y=0
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P+ aQ+T=0
(6.4)

aPQ+ =0J

Further if we write

Vy = F(w) sgn y + F w(') (6.5)

at y = 0 where F(w) is the Fourier transform of a function equal to fP(x)

if Ixic I and is otherwise zero, while FI (w) is the Fourier transform of a

function which is arbitrary in Ix < 1 and zero in Ixl< 1 , (5.2) yields

F1 i0 l- P) ,(6.6)

1'I - ic43(x -
F(W) (7)7T+ '§ (6.7)1 [, •x~x+ 2(x_ ++X)

using (6. 4) and retaining only leading terms. From (6. 6) we have

S'(x) 2 ) Ixi< (6.8)

and otherwise is zero, in agreement with the corresponding result in (5).

Finally since the pressure is continuous on that part of the x-axis which

does not include the body we have
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iw(P - aS + P) = ZG(w) (6.9)

where G(w) is the transform of a function which is zero outside I xl .1

There is now available sufficient information to determine all unknown

functions in terms of f +(x) apart from an indeterminancy associated with

circulation and usually removed by a suitable Kutta condition. If in particular

R >> 1, a <<1 and 0 is of order unity X+, X are given by (5.15),

(5. 21) and since from (6. 4)(6. 9) T'(x) is non-zero only if lxi <1,

(6. 7) may be interpreted as an integral equation

f +lTI(xIl)dx-x = - 0(11+p) f(XI)d x exp- 2( 26.10)

-1 x((-i) -] X (x- X)a

giving T'(x) in terms of S'(x) apart from a complementary function of the

2 -1

form C(1 - x )_ where C is an arbitrary constant presumable determined

by a suitable Kutta condition. It is noted that from (6. 10) T' and S' are

of the same order of magnitude and that T' - 0 as 0 - 0 in agreement with

Lary (5).

We are now in a position to compute the force on the body and to

comment on the wake structure. Restricting attention to P > I the drag

on the body is
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+1

f afI(x) dx + A p )dx (6.11)

where A are the excess pressures on the top (y = 0') and bottom

surfaces of the body. Using the formula (5. 5) for the pressure in terms

of +, ti and (6. 2), (6.3) it is fairly easy to show that the Fourier

transform of A p + A p is

3PVoRa F(R)

2- 1 (6.12)

whence

2ppV2 1 I f'(x')dx' 2
p + = A p{f -{ (x' -X)} (6.13)

+ - {(P-l)} !x (x'-X)!

and ( 6. 11) may now be evaluated in any specific case. At large values of

0 (6.13) reduces to 2f (x) /a in agreement with (4) and as 0 0

(6.13) reduces to

PVP rR fl f;l(x,)dx,_( )f (6.14)

x (x, -x)i
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in agreement with Law (5). From the formula for the excess pressure it

is possible to deduce a condition for the validity of the assumption that

the linearized equation and boundary conditions may be used, namely

Max{ Rt, ) << (6.15)

where # is a measure of the thickness of the body.

Let us now look at the structure of the wake when P > 1, focusing

attention on the downstream wake, present if 0 = co but absent if 0 = 0.

The upstream wake and the case P < I can be examined by similar methods.

The downstream wake is given by 8 2 /x~y for it makes the dominant

contribution to p, vx in the range of values of R, a of interest here. The

wake only appears if y > 0 when

F~~w exp iwx - ~y {O+ 4 2iW4-l) 1) (6. 16)8xay 2 17 {•e 2 . iw(2-l)}1  w.ipO2

As 0 -- o this expression reduces to

o0

f L.. f(w) dw exp iwa {x - c y)

1
* (6.17)

I f I* f(x -c+y)

a
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if Ix - c+ yI < I and is otherwise zero, where c+ is defined in (5.12).

This result is in agreement with (4) and shows that when 0 is large the

wake is controlled by the exponential term. At a finite value of 0, x > 1

and taking f +(x) to be a polynomial, the contour of integration in (6.16)

2
may be deformed into a finite closed curve C surrounding w = i0.

As 0 -• 0 this contour can become a point circle at the origin so that

the integral vanishes. When 0 << I only the behaviour of the integrand

near w = 0 is relevant and since f+ (1) =f +(-l) the limit of F(w)/iw as

W -& 0 exists and we write it as A. Consequently (6.16) is equivalent to

writing

a = 3Ry # X, (6.18)
8xay

if 0 << 1 where X = xY = Ry and

'f (X,Y)=-- {-s-f Sds - exp {isX- s-y (P + 4p - is(P -F).
21rY C (P -is(p - ))}a-i

If Y is small, A may be expanded as a Maclaurin series in Y whose

coefficients are functions of X; the leading terms are

2P2e- Px + 2P3Ye (PXl-3) + O(Y2) . (6.19)
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If Y is large / may be evaluated by the method of steepest descent

and we have

-- I ''Y P~t"exp (Ix Y) 2
ex- ) (6.20)

r (ZirY ) 2r 2Y

II

where T = I + P 1 . Thus the strength of the wake falls off rapidly as - 0

from (6. 18) and in addition becomes much more diffuse X, Y remaining

small for a wide range of values of x, y. Nevertheless the characteristic

wake structure,albeit in a very weakened form, remains for all 0 > 0. This

follows from (6. 20) which shows that the wake is centred on the line

X = TY i.e. x = c+y and spreads out like Y1 far downstream from the

body. It is noted that (6.20) represents the wake structure when Y is

large for all non-zero 8 including 0 = o and consequently shows how

the structure depends on 8. For example when 0 is large the thickness

of the wake ~y 1/9 as would be expected since the wake has a constant

finite thickness when 0 =
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